Linear systems of curves upon algebraic surfaces
نویسندگان
چکیده
منابع مشابه
Algebraic Solving of Complex Interval Linear Systems by Limiting Factors
In this work, we propose a simple method for obtaining the algebraic solution of a complex interval linear system where coefficient matrix is a complex matrix and the right-hand-side vector is a complex interval vector. We first use a complex interval version of the Doolittle decomposition method and then we restrict the Doolittle's solution, by complex limiting factors, to achieve a complex in...
متن کاملμ-Bases of Algebraic Curves and Surfaces
Pisokas et Stellina Sideri. Grâcè a eux j'ai passé une année merveilleusè a Nice et j'espère que nous partagerons encore plein de bons moments ensemble. Finalement, je remercie de tout mon coeur ma m` ere Gerda et mon frère Christoph pour leur amour et leur soutien. Je leur serai toujours reconnais-sant pour tout ce qu'ils ont fait pour moi.
متن کاملArrangements of Curves and Algebraic Surfaces
We show a close relation between Chern and logarithmic Chern numbers of complex algebraic surfaces. The method is a “random” p-th root cover which exploits a large scale behavior of Dedekind sums and continued fractions. We use this to construct smooth projective surfaces with Chern ratio arbitrarily close to the logarithmic Chern ratio of a given arrangement of curves. For certain arrangements...
متن کاملRadical parametrization of algebraic curves and surfaces
Parametrization of algebraic curves and surfaces is a fundamental topic in CAGD (intersections; offsets and conchoids; etc.) There are many results on rational parametrization, in particular in the curve case, but the class of such objects is relatively small. If we allow root extraction, the class of parametrizable objetcs is greatly enlarged (for example, elliptic curves can be parametrized w...
متن کاملLinear Systems of Rational Curves on Rational Surfaces
Given a curve C on a projective nonsingular rational surface S, over an algebraically closed field of characteristic zero, we are interested in the set ΩC of linear systems L on S satisfying C ∈ L, dimL > 1, and the general member of L is a rational curve. The main result of the paper gives a complete description of ΩC and, in particular, characterizes the curves C for which ΩC is non empty. 20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1903
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1903-01076-3